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A method for exact reduction of finite Wiener—Hopf type diffraction problems to an
infinite set of simultaneous equations is presented. The problem considered is that of
acoustic scattering by a finite elastic strip. The numerical implementation of the
method is described and the truncation of the infinite set of equations is shown to
converge to the full solution as the number of equations and unknowns goes to
infinity. Results of the numerical computations are given and show effects of the
leaky wave above the coincidence frequency of the plate and resonances below that
frequency.

1. Introduction

) N

The treatment of wave diffraction from semi-infinite scatterers using the Wiener—
Hopf technique is well established (see, for example, Noble 1958) and has proved
highly successful in a wide class of problems. In contrast, the analysis of scattering
from finite objects remains less developed and it is to one specific problem in this area
that we devote this paper.

A different class of scattering problems can be solved by separation of variables
(see, for example, Morse & Feshbach 1953). Such problems include spherical and
cylindrical scatterers and also ellipsoids and strips if the boundary conditions permit.

The extension of the Wiener—Hopf technique to finite scatterers has been the
subject of some study (see, for example, Noble 1958, §5.6; Keogh 1985; Gautsen
1988a, b). These authors develop asymptotic expansions in the limit of large, but
finite scatterers.
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146 J. F. M. Scott

Application of the Wiener—Hopf technique to semi-infinite problems leads to their
solution in closed form, sometimes with a set of simultaneous equations to solve for
unknown constants. For finite strips or cylinders, the result of applying the
technique is a pair of coupled integral equations (see Noble 1958). This is the aspect
of such problems which makes their exact analysis difficult. The central component
of our work is that a certain unknown function of complex wavenumber, which
satisfies an integral equation, is expanded as a power series in a known function of
wavenumber (the latter function being a Moebius transform). The coefficients of the
power series form an infinite set of unknowns and it turns out that the integral
equation can be reduced to a set of simultaneous equations for the cocfficients.

The specific problem I have chosen to study is the scattering of an acoustic plane
wave by a finite elastic strip. The semi-infinite equivalent of this problem has been
examined by Cannell (1975, 1976) and Crighton & Innes (1984).

The analysis of the finite strip proceeds as follows. Half-range Fourier transforms
are defined at each end of the strip as if the strip was semi-infinite. Since it is in fact
finite, the resulting Wiener-Hopf equation for each end contains a term resulting
from the transform over the extension of the strip at the other end. Formal solution
of the Wiener—Hopf equations results in the integral equations referred to above.

Section 2 describes both the formulation of the problem and the subsequent
analysis needed to produce the Wiener-Hopf equations. In §3 we derive the
associated integral equations. Section 4 is devoted to an approximation which is
obtained by neglecting certain terms that are formally small in the limit of wide
strips. This procedure reproduces the results which would be obtained if the edges of
the strip were regarded as semi-infinite, coupled only through the modes of
propagation allowed on an infinite fluid-loaded plate (an informal method that has,
for instance, been used by Crighton & Innes (1984) when treating the finite, but long
version of the present problem in the limit of heavy fluid loading and also by
Abrahams (1981) for the baffled strip, again in the limit of heavy loading). This
approximation provides a simpler physical interpretation than the analysis of the
full finite problem which we describe in §5.

Numerical implementation of the procedure for a finite strip is discussed in
Appendixes A-C. This mostly involves the numerical evaluation of various complex
contour integrals. The emphasis here is on a suitable choice of contour, the removal
of poles which lie near that contour and the reduction to a finite domain of
integration via a transformation of integration variable. Once this is achieved the
numerical evaluation of integrals of smooth functions on finite intervals is
straightforward.

The numerical solution of the infinite set of simultaneous equations resulting from
our analysis is achieved by truncation of the equations to a finite number. It is shown
in Appendix D that the solution of these finite problems approaches the solution of
the infinite problem as the number of equations (and unknowns) increases.

Finally, a discussion and some results of the method are given in §6. These show
resonant behaviour below the coincidence frequency of the plate, a topic which has
been examined in the light-fluid-loading limit by Leppington (1976) and in the heavy
loading limit by Abrahams (1981).

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. Scattering by a finite strip showing the coordinate system.

2. Derivation of the Wiener—-Hopf equation

The semi-infinite version of our problem was studied by previous authors. We
therefore keep the description as brief as possible. Our formulation is, 1 believe,
simpler than those previously presented. It is also intended to be symmetric in
relation to the two edges.

A thin elastic plate occupies the strip 0 < @ < L, y = 0 and is irradiated by a plane
acoustic wave for which the pressure is

Pine = €XPp {ikincx+yincy'—iwt}’ (21)

where Eine = ko080, Vine = —ikysin by, (2.2)

and k, = w/c is the acoustic wavenumber. Henceforth we suppress the explicit time
dependence. The geometry is shown in figure 1. We note that, although the fluid
surrounds the elastic strip, occupying both the region y <0 and y > 0, we shall
restrict attention to the half-space y > 0. This is possible because the scattered
pressure, ¥ = p—Pi,., is antisymmetric under reflection in the plane y = 0.

The scattered pressure satisfies the conditions

=0, y=0, 2<0 or x>1L, (2.3)
and for a plate displacement 7, the motion of the plate is governed by
B/t —kin)+2¢y =0; y=04+, 0<z<L. (2.4)
The kinematic condition is given by
Ip/oy = pyw?n; y=0+, 0 <z <L. (2.5)

In (2.4) and (2.5), B is bending stiffness, k, is the plate wavenumber in the absence
of fluid loading (kf = mw*/B, m being mass per unit area of plate) and p, is ambient
fluid density. Finally, y, satisfies the Helmholtz equation

0Ny /0 + 0% /oy + 2y =0 (2.6)

in the fluid region exterior to the plate.
I adopt the conventional ploy of introducing some artificial dissipation in the fluid
by making the acoustic wavenumber slightly complex, i.e. k, = w/c+ie with ¢ > 0.

This has the effect of making the scattered wave, i, exponentially decaying, as e™,

Phil. Trans. R. Soc. Lond. A (1992)
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for large distances r from the plate, resulting in strips of analyticity when we take
Fourier transforms. For instance the full-range transform

J(ke) = r e da (2.7)

is an analytic function of complex & within the strip D defined by [Im (k)| < ¢. Taking
a full-range transform of (2.6) and solving for ¥ subject to the radiation condition of
exponential decay at large distances yields

(')z/;/(')yz—w}; y=0+, (2.8)

where y is the usual acoustic square root y = (k2 —k2) defined in the strip D to have
positive real part. Extension of v to all complex k leads to branch cuts from & = + £,
which do not enter D, but instead go upwards or downwards from their branch points
along paths which are arbitrary at this stage.

Equations (2.3)-(2.5) and (2.8) together with the edge conditions of the plate
describe the problem. If we were solving the semi-infinite problem we would define
half-range transforms relative to the edge of the plate. Here we have two edges, at
2 =0 and L, and it is natural to define two pairs of half-range transforms. Thus

YO (k) = J Yy =04)e™ da, (2.9)
0
0 .
O k) = J Yy =04)c* da (2.10)
refer to the edge at = 0 and
L
Yok) = f Yly = 0+) 00 da, (2.11)
PP (k) = j Yy = 0+)e*Ea dy (2.12)
L

to that at x = L. We also write /(" and /" for the corresponding transforms of
0y /dy. The quantities with subscript ‘ 4+~ arc analytic in the half-plane D, defined
by Im (k) > —e¢, while those with subscript * — are analytic in D_(Im (k) < ¢).

It is clear that the above transforms, which are defined in overlapping sections
of the w-axis, are not independent of each other. Thus the full-range transform
Yy = 0+) can be related to the half-range transforms via

Py = O )+ Ok), (2.13)
or k) = e * LD (— k) + B (—k)). (2.14)

In addition, we can also define a finite range transform
L
k) = f Yy = 0+)e ™ du, (2.15)
0

which is analytic for all complex k and can be related to the previous definitions via

(k) = (k) + O (k) + e iy (— ) (2.16)
for k in D.

Phil. Trans. R. Soc. Lond. A (1992)
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Taking finite range transforms of (2.4) and (2.5) yields
LB —I8) 1+ = QO (k) + 1L QU (— ) (2.17)
and U= po 0"+ [ine/ (bt kne) Hoxp itk + kine) L] — 1, (2.18)

where 7 and " are the finite-range transforms of 5 and 0y /dy respectively and we
have used (2.1) to write Op/0y in terms of 0y /Jy. The quantities Q@ and Q“ are the
edge polynomials which are associated with plate edges and arise when taking finite
Fourier transforms of the platc equation. They are given by

Q<°> = 3Blin, k> —no k> —ing ke+ 97’} (2.19)
and QP (k) = LB{in, k> + 9, B —in] k—9y}}, (2.20)

where 3,, 19, 75 and 5, refer to the values of % and its x-derivatives at the edge
x =0, while ,, etc., refer to the other edge. We note that there are two plate
boundary oonditions to be satisfied at each edge (e.g. #” = %" =0 at a free edge,
n=1n" =0 at a clamped edge, 7 =7%" =0 at a pinned edge) and this leaves two
implicit unknowns in each of Q© and Q% to be determined later.

From (2.8) we have W AP O (k) + e D (— ) = _},1}, (2.21)
while from (2.3) =1

These two equations can be used to eliminate ¢ and ¥ from (2.17) and (2.18) which
can then be combined by elimination of 7 to give

K(k) (k) = AO (k) + "L AL (—T) (2.23)
for k in D, where A© and A% are defined below, while
Kk)y=1—yP(k .
and the polynomial P is ) 7P (2.24)
P(k) = (B/2p,®) (k*—k3). (2.25)

The function K(k) will turn out to be the Wiener—Hopf kernel.

The zeros of K(k) give the wavenumbers of the free modes of propagation on an
infinite fluid-loaded plate. The corresponding modes of the plate without fluid
loading are described by the zeros of P(k).

The functions 4@ and A% are important in our analysis and are given by

AR () = QU (k) + P(k) {f ™ (k) — a™ [ (k+ kX)) (2.26)

for k in D_, where here and elsewhere the dummy index * may take the values 0 or
L. The quantities a* and k{}) occurring in (2.26) are defined as follows. Let 4 =1
and AP = ¢'Fincl he the incident wave amplitudes as seen by the edges at 0 and L
respectively. Further, let {2, =6, . and 0{.) = 1—0,,. be the angles of incidence
with respect to the corresponding edges. We then define o™ =iy, . A™ and
ki) = ko cos 0. Thus kT = ko = — ki

Lquatl()n (2.23) may casily be turned into Wiener-Hopf equations for both edges.
For z = 0 we simply use = 3, while for x = L we use iy = ¥/ (—k) and the

symmetry K(—k) = K(k). Thus

K(k) (k) = A (k) + L GO (k), (2.27)
where GOk) = AP (—k), GP(k)=AO(—k). (2.28)
Equation (2.27) gives the Wiener—Hopf equation for both edges.

Phil. Trans. R. Soc. Lond. A (1992)
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150 J.F. M. Scott

The usual Wiener—Hopf equation is of the form (2.27) with A% analytic in D_. In
fact, from (2.26), we see that 4% is analytic in D_ except for a single pole of known
residue at k= —k{}). This pole provides no great obstacle to the Wiener Hopf
argument.

If the term e¢*2 G™ is omitted from (2.27), we recover the equation for the semi-
infinite problem. This term therefore represents the effects of the other end of the
strip, i.e. waves which are scattered from the other end and which impinge on the
edge at x = *.

In addition to the Wiener—Hopf equation (2.27), whose formal solution we derive
in the next section, a number of conditions are needed to ensure that all half or finite
range transforms are analytic in appropriate domains. Now although A (k) is
defined by (2.26) only for k£ in D_, when we have solved the Wiener—Hopf problem,
we will have expressions for it which are valid for all complex k. We can already see
that (2.22) and (2.23) provide an extension of A*¥ (k) to D, because ¥ is analytic
everywhere. Evaluating (2.17) at a root of P(k) = 0 and using (2.22)—(2.24) we have

AO() = QO (k) = — e *HAD (— 1) — QP (— k), (2.29)

which holds at all roots of P = 0.
Now for a root of P =0 in D_ equation (2.26) yields

AD (k) = Q) (k), (2.30)

which can be combined with (2.29) to show that in fact (2.30) hold at all roots of
P(k) = 0 even those not in D_. Equation (2.30) evaluated at each of the four roots
of P = 0 give the conditions necessary for analyticity of all functions in their respective
domains. These conditions will allow us to solve for all unknowns, including those
implicit in Q.

Finally, we should note that (2.23), written in the form

Yk) = (AO(k)+e*L AL (—k)) /K (k) (2.31)

gives the Fourier transform of the scattered field from which the scattered pressure
at any point can be obtained from

zp_bgn J (k) eor 9 A (2.32)

if required. Of course, the functions A“(k) occurring in (2.31) remain to be
determined and this is the objective of what follows.

3. Formal solution of the Wiener—-Hopf problem

In all applications of the Wiener-Hopf technique, a product split of the kernel is
required. Thus K = K, K_ with K, analytic and non-zero in 1)4 , where the domains
D are upper and 10wcr halves of thu complex plane which overlap in a strip D. When
(ll%%lpatl()n in the fluid is set to zero it is known (see, for example, Crighton 1979) that
there is only one pair of real zeros of K(k) (which have the form k = +k with £ > k).
For small positive ¢, the positive root moves into the domain Im(k) > 0 so that the
mode in question is attenuated as it propagates. Let ¢ = min (e, Im(/c)) so that K(k)
has no zeros in the new strip D defined by [Im (k)| < ¢. The strip D is contained inside

Phil. Trans. R. Soc. Lond. A (1992)
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C
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Figure 2. Complex k-plane showing the integration contour, C, and branch cuts for v.
g I I g g Y

the strip D which was defined in §2. The standard produet split K(k) = K, (k) K_(k),
with the normalization K, (k) = K_(—k) can now be used (see, for example, Noble
1958). When extended to all complex k, K (k) is analytic apart from the branch cut
for v emanating from k = — k&, and non-zero except for those roots of K(k) = 0 which
lie in D_. The large k asymptotics of K, are K, (k) ~ const. x k.

If, as usual, we divide the Wiener-Hopf equation (2.27) by K_(k) we have a
function on the left which is analytic in D, and the first term on the right is analytic

in D_ apart possibly from a pole at & = —k{¥). The remaining term is

H® (k) = kL G (k) /K_(k) (3.1)

of which we wish to form the additive split H* (k) = H® (k) + H™ (k).

The function G is given by (2.28) and is analytic in D, except for a pole at
k = —k¥). It follows that in D, H* has the following singularities : the branch-cut for
y and poles at all roots of K_(k) plus a pole at k = —k{}). We denote the roots of
K(k)y=0inD,byk =k, (n=1,...,N). These roots are the mode wavenumbers of the
infinite fluid-loaded plate.

Let us define H® by

N d(n*)

H® = 3 Qo). (3.2)
nk—k,
where 4 = el GO (L) /K (k) (3.3)

with K = dK_/dk and

QB (k) =

2 ZisL (k)
(ky+ k) f( elsl G0 () ds. (3.4)
c

2mi ky+38)?2 (s—k)K_(s)

In this integral the contour of integration, C, lies in D, and runs around the branch-
cut for y: down the left-hand side, around the branch point at s = k, and up the
right-hand side of the cut as shown in figure 2. The contour should not enclose the
points s = k, s = —k{¥) and s = k, but is otherwise arbitrary.

The function Q% is analytic throughout the complex k-plane except for the
branch-cut for y emanating from k = k,. At the branch-cut it undergoes the same
jump in value as —H™. The function H* is analytic in D_, while in D, it inherits
the poles of H*® with the correct residues by virtue of (3.3). It now follows that if we
define H® = H® — H® then H® is analytic in D, apart from a pole at k = —k{¥).

Let us define

JE) = Ko 0 +0% [ (k+ ki) — HLY (3.5)

Phil. Trans. R. Soc. Lond. A (1992)
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152 J. F. M. Scott
and FO() = A9 K+ (k+ kD) + H, (3.6)
where b = P(kE) a™ /K _(— k), (3.7)

so that the Wiener—Hopf equation (2.27) yields f* = f* in D.

From (2.26) we see that the pole of (3.6) at k = —k$¥) has zero residue by virtue of
(3.7). It follows that f®* is analytic in D . Equation (3.5) defines f* as analytic in
D, aside from a potential pole at k = —k{¥). Now we have already seen that f® has
no pole at k = — k(¥ and that f* = f® throughout D. Thus f{* is in fact analytic
in D,. Following the Wiener-Hopf argument, f{*' define an entire function of
complcx k. It now remains to consider the behaviour of f* as k> co.

The usual results concerning the behaviour of half- range transforms at large & (see
Noble 1958) yield ¥ = O(k™") in D, and /> = O(k™*) in D_. It may then be shown
that f(V = O(Icg) and f% = O(k) as k» o0 in D, and D_ respectively. The extended
form of Liouville’s theorem therefore leads to

FOO = fO0 = OO 4 B (T — k), (3.8)

where B and E(* are unknown coefficients.
From (3.2), (3.6) and (3.8) we have finally
He) N e

g+ I+ QW (k) (3.9)

A = K (B + B (ko =)~ a ko —k

which gives the formal solution of the Wiener—-Hopf problem with d4¥ and Q©
obtained from (2.28), (3.3) and (3.4) as

a0 = elfnl A — /K’ (3.10)

(k0+k)2j ei“LA(L)(—s)
(

(0) =
and S R B r Ty

(3.11)

and two similar equations obtained by interchanging 0 and L in (3.10) and (3.11).
These equations are to be completed via conditions (2.30) which we reproduce for
completeness. Thus

A (k) = QU (k) (3.12)

at all roots of P(k) = 0. Note that (3.9) and (3.12) provide the solution of the semi-
infinite problem if we set @}¥ and Q% to zero.

The formal solution (3.9)—(3.12) contains all elements of the problem and can be
thought of as a set of integral equations for the unknown functions A (k). This was
the formulation referred to in the introduction. From (3.9) it appears that A
contains the unknown constants @(®, E( and the unknown function Q.
Jorresponding to the N+4 unknown constants per edge (a%®, K3 and the two
implicit in @*) we have N+4 equations (3.10) and (3.12). The integral equation
(3.11) corresponds likewise with the unknown function Q®. We describe a method
for the reduction to an infinite set of simultaneous linear equations in §5, while we
devote §4 to a discussion of the approximation which results if we simply set Q) = 0
in (3.9) and ignore equation (3.11). This approximation yields the same results as
the informal approach of taking two semi-infinite edges and allowing them to
communicate via the free-modes of propagation on an infinite plate. Such an
informal approximation procedure has been used by Abrahams (1981) and Crighton
& Innes (1984) for strip problems in the low frequency, heavy-fluid-loading limit. It

Phil. Trans. R. Soc. Lond. A (1992)
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also forms an intrinsic part of the ray theory for cracks in elastic media, where the
propagating mode in question is the Rayleigh wave (see, for example, Achenbach
et al. 1982).

In the remainder of this paper we set the fluid dissipation to zero. This has the
effect of causing the branch points at k = + %, to move onto the real axis. We can
then obtain the far-field scattered pressure from (2.32) by using the method of
steepest descent (see, for example, Noble 1958; Clemmow 1960). Thus

¥~ DOrec, Oune) (L) €07, (3.13)
where D is the directivity function,
D = {ky/2rL} e ™4 sin 0, 1 (ko 008 O,,), (3.14)
and ¥ = —70080,.., ¥y = 78i00,, O, being the receiver angle.

4. The wide strip approximation

In this section we choose the branch cuts for y to run vertically up from k, and
down from —k,. The contour C is chosen to run directly in contact with the cut which
emanates from k,: down the left-hand side and up the right-hand side of it.

Consider equation (3.11) which gives Q™. The integrand contains the exponential
factor e'*“ which decays as Im(s) increases. This means that the important
contributions to the integral come from the region |s—k,| = O(L™!) which decreases
in size as L becomes large. Thus for sufficiently large L we suppose that we can
neglect branch-cut contributions such as Q% in (3.9).

Using this approximation, we first provide an interpretation of the unknowns a$*.
Let us evaluate i on the strip (0 <x <L, y =0+) by using (2.31) and (2.32) as

follows
1 A(O)(]C) e—llcz 0 A(L)( . ]C) eilc(Lﬁz)
=— ——=——dk dk 4.1
V= 2n{ f Kk T T R ’ 1)
where we choose to indent the contours of integration to lie above k = —k;,. and

= fand below k = —k; k > k, being the real root of K = 0. In fact, since (k) has no
poles, such choices are arbltrary, but necessary when we split the 1ntegral as in
equation (4.1).

We deform the first integral in (4.1) to run around the branch- cut foryin D_. In
the process, residue contributions are picked up from polesat k = —k,,, and k = — k
Likewise, the second integral yields a branch-cut contribution from D, and romduo
contributions from k = k,. As before, we argue that we can ignore the branch-cut
contributions when both x and L —x are sufficiently large. The residue contributions
yield
o | 0 gifn 1 L) gikn(L-2) Plkine) Yine ikyner
v E T Kl 2

where b = A (=, ) /K" (k (4.3)
Equation (4.2) may be easily interpreted. There are free modes of propagation of an
infinite pl&tb whose wavenumbers are k,. There is also a forced response given by the

last term in (4.2) which is simply speculdr reflection from an infinite plate. The
amplitude of the nth free mode coming out from the edge at z = * is 6. Note
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however that many of the free-mode wavenumbers have a significant imaginary part
and the resulting exponential decay may make the mode in question small for the
large values of x and L—x at which we can neglect branch-cut contributions to
obtain (4.2).

From (3.10) and (4.3) we have

400) — AR, L P A4(L) — aik, L(0)
al) = el pi gk = etnl piO), (4.4)

which allows us to interpret @{¥ as the amplitude of free mode » incident on the edge
at @ = % having originated at the other end of the strip.

Given the above interpretation in terms of free modes being exchanged between
the edges it is natural to consider the edges in isolation. We have

b N d(n*) }
e 7 )
k + kﬁn()z n=1 /Cn —k

A% ~ K (k) {E(‘,*’ B (kg — k) —

when we neglect Q% in (3.9). Equation (3.12) yields a set of four equations allowing
us to solve for B{¥, B and the two unknowns implicit in Q. The unknown
incident wave amplitudes @{¥ are then considered as specified as far as this single
edge is concerned. Equation (4.5) is of course precisely the one obtained from a semi-
infinite analysis. Let us therefore suppose that we have used (3.12) to eliminate the
unknowns B and E® from (4.5). Thus

N ~
AR = DAk, 05+ X al® A, (k), (4.6)
n=1
where both A(k, ) and /fn(k) are known functions. i
We may now obtain the outgoing wave amplitudes b0 from (4.3) as

N
b = 0%, (050 + X R, a5, 4.7)

m=1
where b, (0) = A(—k,.0) /K" (k,) (4.8)
and R, = A, (—k,)/K (k,). (4.9)

The terms on the right-hand side of (4.7) can be interpreted as follows: the first
represents the outgoing wave amplitude generated by an incident acoustic wave
alone and the second represents the reflection of the incident free modes via a
reflection matrix R,,,. The above results are precisely what one would obtain from
the informal semi-infinite plate theory. When the propagation characteristics, (4.4),
of the middle part of the strip are included, the resulting transmission—reflection
problem can be solved by matrix inversion. Specifically, let II be the propagation
matrix, i.e. )

I, = 0,,efk, (4.10)

and also let d® be a vector of the ¥ and b be a vector of the b,. We then find that,
for instance,

A0 = (I—(IIR)*) " II{bPb(6E)) + b O RITB(O),)}, (4.11)
where the matrix inverse represents the infinity of multiple reflections across the
strip. We emphasize once again that many of the free modes may be too rapidly
decaying to make their way across from one edge to another; such modes simply
produce negligible contributions.
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Acoustic scattering by a finite elastic strip 155

Having determined the @, we may obtain A® from (4.6), (k) from (2.31) and
¥ from (2.32). The far-field can then be calculated via (3.3) if required.

As was mentioned before, the results of this section, which are obtained by the
formal device of neglecting the term Q™ in equation (3.9) for A® are the same as
those obtained from informal, coupled semi-infinite plate theory. The object of the
present study is to develop a method which may be used when this approximation
is no longer valid, perhaps because the strip is not wide or because a pole of the
integrand of (3.11) lies near to k& = k,, leading to a large value of the integrand there.

As an initial step towards this object, let us see how we might improve the
approximation of this section. As was discussed earlier on, it is expected that the
contributions to the integral for Q™ in (3.11) should be predominantly from the
region |s—ko| = O(L™"), for large values of L. Provided that |k—k|L is large, we may
then suppose that the factor (s—k) in equation (3.11) may be approximated by k,— k.

This means that Q% x const. x (k, + k)?/ (kg — k),

except near to k = k,. An improved approximation can be based on this observation,
but we are more concerned with cases for which L is not all that large. In the next
section, we adopt a power series expansion for Q™ of which the first term has the
above form. The resulting formulation is then exact.

5. Reduction to simultaneous equations

We now describe the process whereby the integral equations of §3 are reduced to
an infinite set of simultaneous equations. Our first observation is that Q® as given
by (3.11) is analytic in the left half-plane Re (k) < 0. This half-plane may in turn be
mapped into the unit circle by the transformation k- (k,+k)/(k,—k), which
suggests a power series in the variable (k,+k)/(k,—Fk). In fact Q%/(k,+k) is
expanded in such a series.

We note that

1 — o & (ky—=s)" (kg + k)"
s—k * oo (kg +8)" (kg — )™+

5.1)

for Re (s) > 0 and Re (k) < 0. We suppose here and henceforth that the contour C lies
in the right half-plane, Re (s) > 0, so that (5.1) can be used in (3.11) to give

ky+k & ko + k\"**
QOO () = 2o g0 [ 2o .
- ke rEo “ (ko—k) 5:2)
as the power series expansion of Q* where
k2 A(L)(—S) eisL(k _S)n
(00 — Z0 0
%n niﬁ et s)™ K _(s) ° (5-3)

and @’ is given by the same equation with the symbols O and L interchanged.
The power series expansion is convergent in the domain Re (k) < 0 so that (5.2) can
be used in (3.9) to obtain A there. Thus we find that

b N4 ko+k ® b +k n+1
(%) — (%) J(*) ) — . n 0 (%) 0
A K_(k) {Eo +ﬁ1 (ko k) ]C-I-IC;;‘;()._*-E_;I kn—k+ ko n§0 sy, (k‘o—k) }

(5.4)
for Re (k) < 0.
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Now although (5.4) holds only in Re (k) < 0 it may, for instance, be used in (5.3)
to obtain

- 1 N
a®+ ¥ M, a"+ X M, EP+ X M, d = b m, (0), (5.5)
ot m=0 m=1
ik [ K (=) ek, —s)" " 5.6
7 \ P ’ 5.6
where n T o j K _(8) (ky+s)"** o

M, = - k)+8)3+n~m >
(
o iky K_(—s)el(k,—s)"
T Je K (s) (kg s)"T (/Sm +)

i K_(=s) e ey —=s)" (5.9)
T )oK (8) (ko)™ (kgcosO—s) o

C :
279 _ isL —g\n
[ Kot T, o
o K (s)(

ds (5.8)

and m,(0) =

equations (5.5) also holds with the symbols O and L interchanged. 1t provides an
infinite set of simultancous equations corresponding to the infinity of unknown
coefficients @® which we have now introduced.

When we use (5.4) in (3.1) to obtain an expression for Q% and then substitute into
(3.9) we find that

© 1 o N d(()) b(())
A =K;_(Ic){ Y B, — k) Y e
n=0 " 0 n=1 i"/," “‘]C ]C + k{?l)(

e 1 N ,\
+2wmwwzwmwwzw@mwwmmw}mw>

n=0 n=0 n=1

- (ko + k)2 [ K_(—s) e (ky—s)""? -
here k) = 1s, 5.11
wher Q) = ity ) K (5] (b ) (s —R) 5-11)
(ky+k)% [ K_(—s)e™(ky+s)"? -
= 1s, 5.12
2, (k) omi ). K () (s—F) ds, (5.12)
G (k) = ““ﬁk)zj K(=9e™ 4 (5.13)
g 20 o K (s) (s— k) (kg +8)% (ke +5) '
(ky+k)? K_(—s)elst . -
. = 5.14
and (k. 0) 2mi oK (8) (s—k) (ko4 5) (s— ko cos 0) s (5.14)

Equation (5.10) also gives 4% when O and L arc interchanged. These expressions are
valid for all k and give A% in terms of the unknowns £, 0¥ and ai®.

We now have the complete set of simultancous equations to solve. These consists
of (3.10) and (3.12) (using expression (5.10) for A%) together with (5.5). The former
two correspond to the unknowns @4 and £ (and those implicit in @), while the
latter correspond to the unknowns @ which we have introduced in this section.
Once this set of equations has been solved, 1,5 can be obtained from (2.31) and (5.10).
Thus we have succeeded in our object of reducing the scattering problem to a set of
simultancous equations. It will, however, be appreciated that there remain the
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Acoustic scallering by a finite elastic strip 157

computational problems of actually calculating the various contour integrals and
solving the equations. These issues are addressed in Appendixes A, B and C.

6. Discussion

We have presented an analysis of the scattering by a finite elastic strip which leads
to an infinite set of simultancous equations in an infinite number of unknowns. This
represents an extension of the Wiener—Hopf technique from the coupled pair of
integral equations which result when it is applied to finite problems.

The numerical implementation of the method involves the truncation of the
infinite set of equations. An outline proof that this truncation procedure approaches
the solution of the infinite problem as the number of unknowns increases is given in
Appendix D.

Numerical solution of the equations derived in this paper requires the computation
of certain contour integrals. Firstly, the multiplicative split of the kernel requires
such evaluations and is described in Appendix B. The remaining contour integrals
were introduced in §5 and their evaluation is deseribed in Appendix C. The main
concern is to ensure that any singularities of the integrand are either kept away from
the integration contour or are removed prior to numerical evaluation. The methods
used probably have fairly wide applications; similar methods have been used by the
author to evaluate the numerical splits of Wiener—Hopf kernels of a number of
different problems.

Some results obtained from the calculations are shown in figure 3. They show plots
of far-field scattered pressure where the receiver and source share the same value of
0. The strip has free edges and an aspect ratio L /h = 20, h being the plate thickness.
The fluid and strip have the properties of water and steel respectively. The plot in
figure 3a is for a frequency of 0.428 times the coincidence frequency for the plate.
Figure 3b-d shows plots for increasing frequencies up to 2.14 times the coincidence
frequency in figure 3d. A specular reflection of decreasing angular width and
increasing number of side-lobes is evident in all plots. This is to be expected of course.
Figure 3b and ¢ (at 0.856 and 1.07 times the coincidence frequency) shows the
emergence of another distinet feature which persists to higher frequencies and can
clearly be identified as being due to the ‘leaky’” wave (see Crighton 1979).

The above cases were also treated using the approximation of §4, which we have
shown to be equivalent to taking two semi-infinite plates and allowing them to
communicate through the modes of an infinite plate. The results are not shown here,
but are very similar to those obtained via the exact method. Differences of the order
of 10% in intensity (or about 0.5 dB) were typical but varied significantly with
frequency and angle. Thus a rough idea of the scattering strength can be obtained
from the approximate method, but more accurate results require the full analysis.
We should also mention that other cases we have tried, involving acoustic scattering
from finite elastic cylinders, can produce gross discrepancies in some ranges of
frequency and angle. This occurred when there was a mode of propagation on the
infinite cylinder whose wavenumber was close to the acoustic wavenumber, k.

Figures 4 and 5 show results as a function of frequency for two angles (6 = 72° and
36°). Resonances of the plate are evident below the coincidence frequency. The
resonant contributions have decreasing strength and increasing width as frequency
increases towards coincidence. For the purposes of comparison, these figures show
the corresponding results if the plate were infinitely stiff as a dashed line.
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Figure 3. Plot of 20log,,|D(8, 0)| against 6 for the following multiples of the coincidence
frequency: (a) 0.428, (b) 0.856, (c¢) 1.07 and (d) 2.14.
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Tigure 4. 20log,,|D(0, 0)| against frequency for 6 = 72°; the dashed line shows the result for a rigid
strip.
Tigure 5. 20log,,|D(0, 0)| against frequency for 6 = 36°; the dashed line shows the result for a rigid
strip.
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Acoustic scattering by a finite elastic strip 159

The problem analysed in this paper had the incident plane wavefront parallel to
the edge of the strip. Oblique incidence (i.e. with sinusoidal variation along the edge
of the strip) can be treated by the same techniques, involving only a slightly more
complicated formulation. I have not included this here because I wish to present
the methods as clearly as possible.

The methods described here are applicable to many finite problems. I intend to
present further work on such problems shortly.

Appendix A. Numerical implementation

From an analytical point of view the choice of branch cut for v is largely arbitrary.
However, numerically we wish to avoid poles of the integrand which lie near to the
contours of integration. In particular it will turn out that the integrals in equations
(5.6)—(5.9) and (5.11)—(5.14), whose evaluation is described in Appendix C lead to
pole singularities at the roots of y2P? = 1. We choose the branch cuts for y to lie along
straight lines given by

where u is a positive real parameter and ¢ = e'? with in < ¢ < ir.

The angle ¢ that the cuts make with the real axis is chosen as follows. Each of the
roots of the polynomial equation y*P? = 1 is examined. The value of arg (k—k,) gives
the angle of the root, &, as seen from k,. For any given value of ¢ we can calculate
the angular ‘distance’ of the cut to each root and to ¢ = jn, 3m. The ‘nearest’ of these
possibilities, i.e. the above roots or ¢ = {7, im, gives a measure of the proximity of the
cut to the closest problem area. This angular distance is maximized, yielding a value
for ¢ as far as possible from any problems.

The above choice of cuts is of course only one of many possible prescriptions; it is
satisfactory because it keeps the cuts away from the roots of y*P? = 1, which was our
objective. The value of y can then be determined from

y = —il((ky—k)/ ) (ko + k) /L)%, (A2)

where the square roots are principal values.

The next problem is to determine the roots of K(k) = 0. Looked at as a function
of y, K = 1 —vyP, is a quintic polynomial with real coefficients for which the roots can
be found by a standard polynomial solver. The difficulty is to refer these roots back
to roots of K(k) =0 in the complex k-plane. There will always be a positive real
y-root which can be directly related to k= (v2+ k2)%. This root is identified and used to
calculate lc . The other y-roots are dealt with as follows. For each y-root define a
value of k by

k=4 + k), (A3)

with the sign chosen so that either k is real and positive or Im (k) > 0. This value of
k may or may not be a root of K =0 (but it will be a root of y2P? = 1). If k lies to
the left of the branch cut emanating from k =k, and the original y-root is in
Im (y) < 0 then £k is one of the Ic Roots which give a value of k to the rlght of the
branch cut and for which Im (y ) >0, Re (y) > 0 are also to be included in the lc
Thus lcl, ..., ky_q are determined.

The contour (' used in the integrals of (5.6)—(5.9) and (5.11)—(5.14) was specified by
the requirement that all pole singularities of the integrands should lie outside of C.
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One such singularity is the real root, k:, which has the property that it may approach
the point k = k, closely at frequencies above the coincidence frequency for the plate.
In this case, the numerical conditioning of the proposed method can become poor and
it is appropriate to include the corresponding pole singularity in Q®* when writing
H™ in the form (3.2). This has the effect of (i) excluding k from the set of roots of
K = 0 (thus reducing N by one) and (ii) redefining C' to include the pole at the real
root. The method is otherwise unchanged.

Having determined the set of roots, 12,“ the next problem is to calculate K_ (k) and
each of the quantities defined by equation (5.6)—(5.9) and (5.11)—(5.14). The
numerical procedures adopted are described in Appendixes B and C. This allows us
to determine the coefficients of the infinite set of linear simultaneous equations for
the unknowns with their right-hand sides (one for each angle of incidence). For
numerical purposes we truncate the set of unknowns a@{® to a finite number and
correspondingly make the number of equations of the form (5.5) finite. The
demonstration that the truncated solutions approach the true solution as the number
of unknowns increases is given in Appendix D. A standard matrix equation solver
then determines the unknowns of the problem for each angle of incidence. At this
stage A can be calculated for any value of complex k by using equation (5.10). The
quantity i can be obtained from (2.31) and ¢ from (2.32) if required. In fact, we are
interested in the far-field, which is given by equation (3.13).

In calculating the far-field, the reader should note the problem that, if we set
Oree =T £ 01, both A (K, cosb,..) and A®(—k,cos0,,,) are infinite due to their
pole at k& = —k{). These poles should cancel each other out when i is formed from
equation (2.31) and this limit must first be taken analytically. We do not give the
details here, but it involves calculating K’ (k)/K,(k), which is the additive Cauchy
split of K'(k)/K (k) and can be computed via a method similar to that described for
Y, in Appendix B. We also note that cases where 0, or 0,,. are zero or 7 lead to zero
scattered field and, as such, do not need to be computed.

Apart from making the usual checks on numerical convergence (namely observing
the effect of increasing the number of integration points in all integrals and the
number of truncated a(’) we also verified that reciprocity and energy conservation
conditions were satisfied. The former leads to D(0,0') = D(#,0) (D being the
directivity function defined in §3) while the latter can be expressed via the identity

f D26, 0" do’ = ( 2n
, A

)2 Re (¢! D(n—0, 0)). (A 4)

OJ

Appendix B. The numerical split of the kernel
Let
N A
Y(k) = ln{—-ZpO 0K (k) y*N75/B 11 (kg—/ci)} (B 1)
n=1

so that Y (k) is analytic apart from the branch cuts for y and the branch of In is chosen
so that Y(k) >0 as k- co.
We perform a Cauchy integral split of Y(k), i.e.

Y. (k) = I_J ) g, (B 2)
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Acoustic scattering by a finite elastic strip 161

Figure 6. The complex k-plane showing the ‘tunnel’ within which the pole is removed
from the integrand.

where the contour (| lies in the strip D, runs from s = — o0 to s = + 00 and lies below
s=k.

The contour of integration is next deformed onto the diagonal line, s = (1 —1i) tk,,
where ¢ is a real parameter. Since Y(k) = Y(—k) we can write

g (1 41) [* Y(s)
Y =Yy -2 3
k) =1, i L sz—lc2dt’ (B3)

where Y] is the residue contribution occurring from the contour deformation if it
crosses the pole at s = £, i.e.
Y, = Y(k), (B 4)
if Re (k) < —Im (k) and Y, = 0 otherwise.
For values of k near the diagonal contour we wish to remove the pole singularity
from the integral to improve numerical conditioning. In this case we have

ko k(141) [* Y(s)— Y,
Y(k) =Y, +Y,—= (n )L 8(2)_k2°dt, (B 5)
where ¥, = 1Y} if Re (k) > —Im (k) and Y, = —1Y; if Re (k) < —Im (k). Equation (B 5)
is obtained from (B 3) by using an identity valid for any value of ¥; in practice we
set Y, = Y(k) when we wish to eliminate the pole and Y = 0 otherwise.
To be specific about when we remove the pole, we define a ‘tunnel’ in the complex
k-plane as shown in figure 6. Points lie within the tunnel when

[Im (k) + Re (k)| < max (|Im (k) — Re (k)| — 3k, &q) (B 6)

and for such values of k we remove the pole by setting ¥, = Y (k). The above choice of
region is of course somewhat arbitrary.

We may transform the infinite integration range in (B 5) into a finite range by
setting w = 1/(1+t¢). Thus we have

_ ko k(L+1) [* Y(9) =¥,
Y.(k)y= Y+, - L (82_162)u2du, (B7)
where s=1=i)ky(l—u)/u (B8)

and according to the above prescription :
(i) above the tunnel we set ¥, = Y+ Y, = 0;
(ii) within the tunnel ¥, = Y(k) and Y, + Y, = 1Y (k);
(iii) below the tunnel we have ¥, = 0 and Y, + Y, = Y(k).
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Once Y, (k) is known, the product split of the kernel can be obtained from
B\ (RPN ,
k) =ie¥+ —if)r—= —i(k+£k,), B9
st (o oo ik

with £ defined as in Appendix A. The somewhat obscure way of writing the term in
square brackets places the branch cut for K, in the same place as the cut for ¥ when
principal values are used for the complex square roots.

The integral in (B 7), being that of a smooth function, can be evaluated by any
standard numerical integration rule. From the point of view of efficicncy, a set of
fixed integration points at which Y(s) is needed is an advantage because these do not
then have to be recalculated every time that Y (k) is required for a new value of k.
This is particularly important since K, (k) is required at a large number of points.

The calculation of Y(s) from equation (B 1) involves the computation of a complex
logarithm. This logarithm is defined to be zero at s = co, but its value at other points
is initially undetermined to within a multiple of 2ri. Continuity along the integration
contour is invoked. Thus the value of Y(s) is computed at integration points starting
from s = 00, i.e. u = 0, stepping towards smaller values of s. Where the argument of
In crosses the branch cut for the particular implementation of the In function this fact
is noted and the appropriate multiple of 2mi is determined so that Y(s) is continuous.

The multiple valued nature of the complex logarithm is also of concern if Y(k) is
needed. In fact, changing the value of Y(k) which is used to compute both ¥, and
Y, +Y, by a multiple of 2ri will not change the calculated value of K (k). However,
it will be recalled that within the tunnel the object is to remove the pole singularity
to improve numerical conditioning. For this reason the correct branch of In is needed
when the pole lies near the contour,

The procedure adopted in choosing Y(k) when £ lies within the tunnel is as follows :
(i) find the integration point nearest & (i.e. with the smallest value of |s—k|); (ii) since
the value of Y(s) is known at this point, find the appropriate multiple of 2ri which
places Y (k) as close to Y(s) as possible.

The computational work was organized as follows. Two routines were written : one
set up a number of quantities including arrays of values for s and Y(s) at the
integration points. A second routine was called whenever a value of K, (k) was
required : this routine determined where k lies relative to the tunnel, calculated Y,
and Y, +Y,, performed the numerical integral and determined K, from (B 9). The
accuracy of the results were determined by varying the number of integration points.

We note that

K_(k) =K. (—k) (B 10)

may be used to evaluate K_ when required, while

K (k,) = K'(k,)/K (k) (b 11)

provides a straightforward way of formulating the set of equations (3.10).

Appendix C. The contour integrals

The contour integrals in (5.6)—(5.9) and (5.11)—(5.14) are each of the form

[ K. (=s)e"t, .
I_L Kl (© 1)
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Acoustic scattering by a finite elastic strip 163

Figure 7. The complex k-plane showing the contour of integration used for
numerical computation.

with a variety of expressions for f(s), none of which exhibit branch cuts. Since
K (—s)=K,(s) and K(s) = K_(s) K_(s) we can rewrite (C 1) as

Ki(S) CisL

1= K f(s)ds, (C2)
_ [ Fs)
or 1= CK(s)dS’ (C3)

where F(s) = K2(s)e'*" f(s) has no branch cut in the region of interest, Re (s) > 0.

The contour, C, was originally required to exclude all poles of the integrand, with
the possible exception of the real root of K = 0, as described in Appendix A. In fact,
the contour we use for numerical integration is as shown in figure 7 and consists of
a section running down the left side of the cut, around a circle of radius a centred at
s =k, and up the right side of the cut. The radius o was chosen as follows: let

oty = min (LY, Yo, ey — o, |, 3y + ), (C4)

where the minimum is to be taken over all 12,, except the real root. There are then
three cases:

() if [k—ky| = 20y, we set o = a;

(i) if g < [b—ko| < 20y, we sot o = Yb—ly|;

(iii) if |k—ky < o, We set a = ag+Yk—k,|. )

It is only in case (iii) that the real root lies inside C. In this case the root & is dropped
from the set of roots, £,, for the purpose of calculating 4% from (5.10) and the
corresponding equation of the form (3.10) is also dropped.

The above choice of contour succeeds in keeping all the roots of K =0 at a
distance. However, in the calculation of m,(0) and all of the £(s) there are poles at
s = kycos@or s = k which can lie inside the circle |s— k| = a. These poles then violate
the requirement that all poles should lie outside C. Even if they lie outside C, but are
close to the contour, they can lead to numerical problems.
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The above problems can be resolved by removal of the offending poles as follows.
The poles in question lie at s = § where § = k or f = k, cos 6. When there are no such
poles of the integrand with |f—k,| < 3o we ignore them and use (C 3) directly. This
is always the case with the integrals of (5.6)-(5.8) for instance.

When there is just one pole with |f—k,| < 3 we may instead use

7 L_L ~
= J cﬁ (8)[1{(3) K(ﬂJdS’ ©5)

which removes the pole and corrects the value of / when £ lies inside C. Two poles,
B, B> which both lie in |f—k,| < 3o can be dealt with using

hl 1 3 ARYA
I= JCI« (s) [RTS—)—AI—AZ(ZS—[)‘I—/)’Z)]ds, (C 6)
where A —l( ! + ! ) and A, = ! ( L1 ) cmn
) ! : K(/))l) K(ﬂz) : 2(/))2_/’)1) K(ﬁl) K(ﬂz) .
In the case when g, = g, the limit of (C 7) should be taken so that
Ay =—K'()/2K>(B). (©8)
The above results can be summarized as follows:
1= J F(s)g(s)ds, (C9)
c
where g(s) = 1/K(s), (C 10)
if there is no offending pole,
gls) = 1/K(s)— 1 /K(p), (C 11)
when there is one such pole, at s = f, and
g(s) = 1/K(s)— A, —A,2s— f,—f,). (C12)

when there are two, at s = S, f,.
We can write

s =ky+al/(1—1) (C13)
for the part of (' which runs along the branch cut and
s = ky+oagel®™, (C 14)

for the circular part of C. Let y denote the value of y just to the right of the branch-
cut. The value of K on the two sides is then K =1—7yP(s) to the right and
K = 1+vyP(s) to the left. Thus the integral contribution from the cut is

e[ PR ‘
1= et | G 19

> . 1 . . .
where y can be determined from y = (s*—k2)2 with a principal value for the square
root. The integral contribution from the circle is given by

1
1, = QTtif F(s)g(s) (s—k,) dv. (C 16)

0
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The above integrals are computed using a standard integration rule. As was the case
with evaluating the kernel split, fixed integration points can be exploited via an
initialization routine which sets up arrays of values which are repeatedly used when
evaluating different integrals. The number of integration points is, as always, varied
to provide a check on accuracy.

Appendix D. Convergence of the truncated solutions

We regard the combination of @, K, the two unknowns from the edge
polynomial @ and the infinite set, @, as an infinite complex vector. A similar
vector can be formed from the corresponding unknowns with 0 replaced by L. This
pair of vectors can be taken as an element of Hilbert space with the usual norm and
inner product. We give the outline of a proof that the truncated equations lead to
solutions which converge to the solution of the infinite set of equations as the number
increases to infinity.

The infinite set of equations, as specified in §5, can be written as

(I+A)a=b, (D 1)

where a is the infinite solution vector, b is the vector of right-hand sides, 4 is a linear
operator and [ is the identity operator. The Fredholm theory of infinite-dimensional
Banach spaces can be applied provided that

X WM, < o, (D 2)
m, n=0
XM, < oo, (D 3)
n=0
X 12, (k)]* < oo, (D 4)
n=0
and > m,(0)F < (D 5)
n=0

hold. In this case (D 1) has a unique solution, provided there is no non-trivial solution
of
(I+A4)a=0. (D 6)

It can be shown, by tracing the arguments used in the paper backwards, that a non-
trivial solution of (D 6) implies a non-trivial solution of the original diffraction
problem with no incident wave. We disregard this possibility on physical grounds.

Truncation of the set of infinite equations leads to a sequence of operators 4,
and right-hand sides b, such that b, >b and A4, >4 (with the usual operator
norm), provided that conditions (D 2)-(D 5) hold. The truncated solutions are
a, = ([+A4,)"'b, and since (I +A4) is invertible (/ +4,)" - (I +A4)~". It then follows
that a, > (I +A4)™'b, the solution of the infinite problem.

It remains to show that (D 2)—(D 5) hold. We demonstrate (D 2) noting that the
proof of the others is similar.

The convergence of the series in (D 2) is determined by the behaviour of |M,| as
n—>o00. Provided that |M,| is sufficiently rapidly decreasing, the series will
converge.
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The definition of M, is equation (5.6). The integrand depends on n through the
factor.

((s—Fky)/(s+ ko))", (D7)
whose modulus can be written
exp[—nln|(s+ky)/(s—kyl] (D 8)

and decays exponentially with n for any fixed value of complex s. However, for large

values of [s|, the decay rate with n becomes small. This indicates that the behaviour

of M, for large n is dictated by large values of || in the integral. As we shall see, it

is the balance between the decrease of the factor (D 7) with increasing » and the

decrease of e!* with increasing Im (s) which determines the form of M, as n—> co.
The product of the above two factors can be written as e?, where

¢ =isL+nln((s—ky)/(s+ky)) (D 9)

and we use the method of steepest descent. The saddle point, where d¢/ds = 0,
occurs at
8o = ko(1+2in/ky L)? (D 10)

and the steepest descent path is given by Im (¢) = constant and runs through s,. For
large enough n, the path can also be shown to go through s = &k, and to asymptote
to the line Re (s) = L7 Im (¢(s,)) > 0 as Im (s) >+ 0.

For large values of n we may approximate ¢ by

¢ ~ (nky L) (ic —207") (D 11)

for o of order one where o = (L/nk,)}s. Under this approximation, the steepest
descent path is given by

Ty =1+ (1—032—0,)%)]/(2—0)), (D 12)

where o = o, +1i0,. The + sign in (D 12) is taken for 0 < o; < 1 and the minus sign
when 1 < o, < 2. The path specified by (D 12) starts at the origin tangential to the
real o-axis, passes smoothly through the saddle point o = 141 and then asymptotes
to o, =2, o, = + 0 (0, 18 an increasing, positive function of o, in 0 < o; < 2). The
above description does not, of course, describe the region where |s| = O(k,) as n—> 00.
In this region

8y = (L/nky) (s2—k2), (D 13)

where s = s, +is, and s; > k,.

We wish to change the branch cut of y emanating from s = k, so that it lies along
the steepest descent path, at least for large |s| of order (nk,/L):. The contour of
integration in (5.6) is also deformed to lie around, and in contact with, the new
branch cut. For such a change in contour to leave the integral unaffected we require
that no poles of the integrand appear or disappear due to the change in cut.

There are a finite number of possible poles that all lie in [s| < S, say. If we choose
the branch cut for v to coincide with the original one for |s| < § and with the steepest
descent path for |s| > 28 then there need be no changes in poles due to the change in
branch cut.

It follows from the discussion following equation (D 7) that the integral along the
contour in |s| < 28 can be bounded above by an exponential term of the form o™ with
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a < 1. The remaining part of the contour lies along the steepest descent path and as
s— o0 the integrand has the asymptotic form

+(i/s*) (= 1)"e? (D 14)

where the + sign applies to the left of the branch cut and the — sign should be used
to the right of the cut. As n— o0, the exponential factor in (D 14) is dominant near
the point s = s,. The usual steepest descent argument involves the expansion of ¢
about s = s, thus

b = Plsy)+ (L2/2n) (1 +2in/ ky L)z (s —s,)*. (D 15)
The integral has the form
w2k, [e?

for s large, where the integral is to be taken along the steepest descent path. It is
straightforward to obtain the saddle point contribution using (D 15) and (D 16) as

M, ~ (— 1) e 8 (2, L/m*n®)iexp [2(i— 1) (nk, L)] (D 17)

for n—co. This contribution dominates that from the integral in [s| < 2S and (D 17)
gives the leading-order term in M, as n—> 0.
According to (D 17)

M2 ~ (2ky L /720 exp | — 4(nk, L)F] (D 18)

as n—>00. This leads directly to convergence of the series, (D 2).
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